Seamless Fin Tube

A fin tube is a tube that has small fins around the outside surface.

These fins act as a filter and a mechanism to transfer heat from the material inside the tube to the outside space or vice versa. Fin tubes are used in applications that require a transfer of heat from a hot fluid to a colder fluid through the tube’s wall.

Grand provide a wide range of fin tubes(carbon, stainless,copper,aluminium,titanium,etc;) are used in heat exchangers (air, water and chemically cooled)for various industries such as petroleum, petrochemical, steel, power generation and many more.

  • Description
  • Detailed information
  • Why use finned tubes?
  • Inquiry

Fin tube reference

Carbon steel fins are available on carbon, stainless steel, or copper tube. Please call for a specific size if not listed

Type Description Base tube
O.D. (mm)
Fin specification (mm)
Fin pitch Fin height Fin thick
Embedded G-type fin tueb 16-63 2.1-5 <17 ~0.4
Extruded Single metal combined metal 8-51 1.6-10 <17 0.2-0.4
Low fin tube t-type fin tube 10-38 0.6-2 <1.6 ~0.3
Bamboo tube corrugated tube 16-51 8-30 <2.5 /
Wound l/kl/ll type fin tube 16-63 2.1-5 <17 ~0.4
String String fin tube 25-38 2.1-3.5 <20 0.2-0.5
U-type U-type tube 16-38 / / /
Welding HF-welding fin tube 16-219 3-25 5-30 0.8-3
H/HH type fin tube 25-63 8-30 <200 1.5-3.5
Studed fin tube 25-219 8-30 5-35 φ5-20

According to user needs, we can produce all kinds of steel strip winding finned tube and steel aluminum composite finned tube.

Materials

Carbon steel fins are available on carbon, stainless steel, or copper tube. Please call for a specific size if not listed

We offer you a broad portfolio of materials and can expand our offering at any time to meet your specific needs regarding thermal conductivity, mechanical properties, or corrosion resistance.

  • Base tube: Carbon steel, Stainless steel, Copper, Cupro Nickel, Aluminium, Alloy Steel
  • Fin: Carbon steel, Stainless steel, Copper, Aluminium
  • Rings: Carbon steel, Aluminium, Hot dip galvanizing

Why use finned tubes?

Finned tubes are used in applications involving the transfer of heat from a hot fluid to a colder fluid through a tube wall. The rate at which such heat transfer can occur depends on three factors: (1) the temperature difference between the two fluids; (2) the heat transfer coefficient between each of the fluids and the tube wall; and (3) the surface area to which each fluid is exposed. In the case of a bare (unfinned) tubes, where the outside surface area is not significantly greater than the inside surface area, the fluid with the lowest heat transfer coefficient will dictate the overall heat transfer rate. When the heat transfer coefficient of the fluid inside the tube is several times larger than that of fluid outside the tube (for example steam inside and oil outside), the overall heat transfer rate can be greatly improved by increasing the outside surface of the tube. In mathematical terms, the product of heat transfer coefficient for the outside fluid multiplied by the outside surface area is made to more closely match the product of the inside fluid heat transfer coefficient multiplied by the inside surface area.

So the whole concept of finned tubes is to increase the outside surface area of the tube. As an example, a finned tube configuration of 2” (nominal, 2.375” actual) pipe with a ¾” high welded helical solid fin of 12 gauge thickness with 6 fins per inch has an outside surface area of 8.23 sq. ft. per linear foot; whereas the same bare pipe has an outside surface area of only .62 sq. ft. per linear foot. That is a 13X increase in outside surface area. See Design Information for extensive tables of surface areas and fin weights.

“The whole concept of finned tubes is to increase the outside surface area of the tube.”
“In many cases, one finned tube replaces six or more bare tubes at less than 1/3 the cost and 1/4 the volume.”

By increasing the outside surface area of the tube, the overall heat transfer rate is increased, thereby reducing the total number of tubes required for a given application. This reduces the overall equipment size and the cost of the project. In many cases, one finned tube replaces six or more bare tubes at less than 1/3 the cost and ¼ the volume.

Contact Us